Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville

Groupe de travail de Probabilités, statistiques, théorie ergodique

Ce groupe de travail réunit les membres de l’équipe probabilités, statistique, théorie ergodique (et toutes personnes intéressées). Il a lieu le jeudi de 15h00 à 16h00.

C’est pour nous l’occasion d’exposer sur nos thèmes de recherche, d’écouter des exposés d’invités au LMPA ou de travailler sur un sujet commun (livre, article).

Responsable du groupe de travail : Nicolas Chenavier

Prochain événement

Groupe de travail de Probabilités, statistiques, théorie ergodique du 21 mars

Feriel Bouhadjera (ULCO)

Let $(T_i)_i$ be a sequence of independent identically distributed (i.i.d.) random variables (r.v.) of interest distributed as $T$ and $(X_i)_i$ be a corresponding vector of covariates taking values on $\mathbb{R}^d$. In
censorship models the r.v. $T$ is subject to random censoring by another r.v. $C$. In this contribution we built a new kernel estimator based on the so-called synthetic data of the mean squared relative error for the regression function. We establish the uniform almost sure convergence with rate
over a compact set and its asymptotic normality. The asymptotic variance is explicitly given and as product we give a confidence bands. A simulation study has been conducted to comfort our theoretical results.

Informations : 15:00 - 16:00 Salle C115

Evénements passés

  • Groupe de travail de Probabilités, statistiques, théorie ergodique du 28 février

    Nikolitsa Chatzigiannakidou (ULCO)

    In this talk we are interested in universality phenomena. To be more explicit, if we consider a sequence of operators $T_n : X\rightarrow Y$, ($n\in\mathbb{N}$), where $X$ and $Y$ are metric spaces, an element $x\in X$ is called universal if every element of $Y$ can be approximated by a subsequence of $(T_nx)_n$. Let $X=H(\Omega)$ be the space of all holomorphic functions in a simply connected domain $\Omega\subset \mathbb{C}$ (with the topology of uniform convergence on compacta). We will focus on classes of holomorphic functions $f$, such that the pairs $(S_n(f), S_{\lambda_n}(f))_n$ perform approximations (where $S_n(f)$ is the sequence of partial sums of the Taylor expansion of $f$, around a point $\zeta\in \Omega$ and $(\lambda_n)_n$ is a strictly increasing sequence of positive integers). These functions, called doubly universal Taylor series, are universal elements for a suitable sequence of operators. We will investigate this class of functions, generalizing a result of G. Costakis and N. Tsirivas. They introduced in 2014 the concept of double universality for Taylor series, inspired by the notion of disjointness in dynamical systems.

    Informations : 15:30 - 16:30 Salle C115

  • Groupe de travail de Probabilités, statistiques, théorie ergodique du 12 mai 2014

    Dirk Hofmann ()

    Informations : 15:00 - 16:00 B014