L.M.P.A
Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville

Analyse numérique d'une approximation élément fini pour un modèle d'intrusion saline dans les aquifères côtiers

Sujet

Dans ce travail, nous étudions un schéma élément fini que nous appliquons à un modèle décrivant l'intrusion saline dans les aquifères côtiers confinés et libres. Le modèle est basé sur l'approche hydraulique qui consiste à moyenner verticalement le problème initial 3D, cette approximation repose sur une hypothèse d'écoulement quasi-hydrostatique qui, loin des épontes et des sources, est vérifiée. Pour modéliser les interfaces entre l'eau douce et l'eau salée (respectivement entre la zone saturée et la zone sèche), nous combinons l'approche 'interface nette' à l'approche avec 'interface diffuse' ; cette approche est déduite de la théorie de champ de phase, introduite par Allen-Cahn, pour décrire les phénomènes de transition entre deux zones. Compte tenu de ces approximations, le problème consiste en un système fortement couplé d'edps quasi-linéaires de type parabolique dans le cas des aquifères libres décrivant l'évolution des profondeurs des 2 surfaces libres et de type elliptique-prabolique dans le cas des aquifères confinés, les inconnues étant alors la profondeur de l'interface eau salée/eau douce et la charge hydraulique de l'eau douce. Dans la première partie de la thèse, nous donnons dans le cas d'un aquifère confiné, des résultats d'estimation d'erreur d'un schéma semi-implicite en temps combiné à une discrétisation en espace de type élément fini Pk Lagrange. Ce résultat utilise entre autre un résultat de régularité du gradient de la solution exacte dans l'espace Lr(ΩT), r > 2, ce qui permet de traiter la non-linéarité et d'établir l'estimation d'erreur sous des hypothèses de régularité raisonnables de la solution exacte. Dans la seconde partie de la thèse, nous généralisons l'étude précédente au cas de l'aquifère libre. La difficulté principale est liée à la complexité du système d'edps paraboliques mais à nouveau, grâce au résultat de régularité Lr(ΩT), r > 2 établi pour les gradients des surfaces libres, nous montrons que le schéma est d'ordre 1 en temps et k en espace pour des solutions suffisamment régulières. Nous concluons ce travail par des simulations numériques dans différents contextes (impact de la porosité et de la conductivité hydraulique sur l'évolution de l'interface, pompage et injection d'eau douce, effet des marées) validant ainsi le modèle et le schéma. Puis nous comparons les résultats à ceux obtenus avec un schéma volume fini construit à partir d'un maillage structuré.

Encadrement

Cette semaine

Séminaire EMA

Groupe de travail IA


Informations

Stochastic Geometry Days  du 15 au 19 novembre.