L.M.P.A
Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville

L'estimation non paramétrique de la fonction de régression pour des données censurées : méthodes locale linéaire et erreur relative

Sujet

Dans cette thèse, nous nous intéressons à développer des méthodes robustes et efficaces dans l’estimation non paramétrique de la fonction de régression. Le modèle considéré ici est le modèle censuré aléatoirement à droite qui est le plus utilisé dans différents domaines pratiques. Dans un premier temps, nous proposons un nouvel estimateur de la fonction de régression en utilisant la méthode linéaire locale. Nous étudions sa convergence uniforme presque sûre avec vitesse. Enfin, nous comparons ses performances avec celles de l’estimateur de la régression à noyau classique à l’aide de simulations. Dans un second temps, nous considérons l’estimateur de la fonction de régression par erreur relative (RER en anglais), basé sur la minimisation de l’erreur quadratique relative moyenne. Ainsi, nous établissons la convergence uniforme presque sûre (sur un compact) avec vitesse de l’estimateur défini pour des observations indépendantes et identiquement distribuées. En outre, nous prouvons sa normalité asymptotique en explicitant le terme de variance. Enfin, nous conduisons une étude de simulations pour confirmer nos résultats théoriques et nous appliquons notre estimateur sur des données réelles. Par la suite, nous étudions la convergence uniforme presque sûre (sur un compact) avec vitesse de l’estimateur RER pour des observations soumises à une structure de dépendance du type α-mélange. Une étude de simulation montre le bon comportement de l’estimateur étudié. Des prévisions sur données générées sont réalisées pour illustrer la robustesse de notre estimateur. Enfin, nous établissons la normalité asymptotique de l’estimateur RER pour des observations α-mélangeantes où nous construisons des intervalles de confiance afin de réaliser une étude de simulations qui valide nos résultats. Pour conclure, le fil conducteur de cette modeste contribution, hormis l’analyse des données censurées est la proposition de deux méthodes de prévision alternative à la régression classique. La première approche corrige les effets de bord crée par les estimateurs à noyaux classiques et réduit le biais. Tandis que la seconde est plus robuste et moins affectée par la présence de valeurs aberrantes dans l’échantillon.