Méthodes tangentielles pour lesréductions de modèles et applications
- Préparée par Yassine Kaouane
- En cotutelle avec le Maroc
- Commencée en septembre 2015 et soutenue le 31 décembre 2018.
- Accès à la thèse complète
Sujet
Les simulations à grande dimension jouent un rôle crucial dans l'étude d'une grande variété de phénomènes physiques complexes, entraînant souvent des demandes écrasantes sur les ressources informatiques. La gestion de ces demandes constitue la principale motivation pour la réduction du modèle : produire des modèles de commande réduite plus simples, qui permettent une simulation plus rapide et moins coûteuse tout en se rapprochant avec précision du comportement du modèle d'origine. La présence des systèmes avec multiples entrées et multiples sorties (MIMO) rend le processus de réduction encore plus difficile. Dans cette thèse, nous nous intéressons aux méthodes de réduction de modèles à grande dimension en utilisant la projection sur des sous-espaces de Krylov tangentielles. Nous nous penchons sur le développement de techniques qui utilisent l'interpolation tangentielle. Celles-ci présentent une alternative efficace et intéressante à la troncature équilibrée qui est considérée comme référence dans le domaine et tout particulièrement la réduction pour les systèmes linéaire à temps invariants. Enfin, une attention particulière sera portée sur l'élaboration de nouveaux algorithmes efficaces et sur l'application à des problèmes pratiques.